悦读星球 -Bayesian Statistics and Marketing 贝氏统计学与营销
本书资料更新时间:2025-01-19 00:17:33

Bayesian Statistics and Marketing 贝氏统计学与营销 下载 mobi 免费 pdf 百度网盘 epub 2025 在线 电子书

Bayesian Statistics and Marketing 贝氏统计学与营销精美图片
》Bayesian Statistics and Marketing 贝氏统计学与营销电子书籍版权问题 请点击这里查看《

Bayesian Statistics and Marketing 贝氏统计学与营销书籍详细信息

  • ISBN:9780470863671
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2006-01
  • 页数:120
  • 价格:716.30
  • 纸张:胶版纸
  • 装帧:精装
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-19 00:17:33

内容简介:

The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources.

Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods.

Written by the leading experts in the field, this unique book:

Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models.

Provides a self-contained introduction to Bayesian methods.

Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems.

Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies.

Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.


书籍目录:

1 Introduction

 1.1 A Basic Paradigm for Marketing Problems

 1.2 A Simple Example

 1.3 Benefits and Costs of the Bayesian Approach

 1.4 An Overview of Methodological Material and Case Studies

 1.5 Computing and This Book

 Acknowledgements

2 Bayesian Essentials

 2.0 Essential Concepts from Distribution Theory

 2.1 The Goal of Inference and Bayes’ Theorem

 2.2 Conditioning and the Likelihood Principle

 2.3 Prediction and Bayes

 2.4 Summarizing the Posterior

 2.5 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators

 2.6 Identification and Bayesian Inference

 2.7 Conjugacy, Sufficiency, and Exponential Families

 2.8 Regression and Multivariate Analysis Examples

 2.9 Integration and Asymptotic Methods

 2.10 Importance Sampling

 2.11 Simulation Primer for Bayesian Problems

 2.12 Simulation from Posterior of Multivariate Regression Model

3 Markov Chain Monte Carlo Methods

 3.1 Markov Chain Monte Carlo Methods

 3.2 A Simple Example: Bivariate Normal Gibbs Sampler

 3.3 Some Markov Chain Theory

 3.4 Gibbs Sampler

 3.5 Gibbs Sampler for the Seemingly Unrelated Regression Model

 3.6 Conditional Distributions and Directed Graphs

 3.7 Hierarchical Linear Models

 3.8 Data Augmentation and a Probit Example

 3.9 Mixtures of Normals

 3.10 Metropolis Algorithms

 3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model

 3.12 Hybrid Markov Chain Monte Carlo Methods

 3.13 Diagnostics

4 Unit-Level Models and Discrete Demand

 4.1 Latent Variable Models

 4.2 Multinomial Probit Model

 4.3 Multivariate Probit Model

 4.4 Demand Theory and Models Involving Discrete Choice

5 Hierarchical Models for Heterogeneous Units

 5.1 Heterogeneity and Priors

 5.2 Hierarchical Models

 5.3 Inference for Hierarchical Models

 5.4 A Hierarchical Multinomial Logit Example

 5.5 Using Mixtures of Normals

 5.6 Further Elaborations of the Normal Model of Heterogeneity

 5.7 Diagnostic Checks of the First-Stage Prior

 5.8 Findings and Influence on Marketing Practice

6 Model Choice and Decision Theory

 6.1 Model Selection

 6.2 Bayes Factors in the Conjugate Setting

 6.3 Asymptotic Methods for Computing Bayes Factors

 6.4 Computing Bayes Factors Using Importance Sampling

 6.5 Bayes Factors Using MCMC Draws

 6.6 Bridge Sampling Methods

 6.7 Posterior Model Probabilities with Unidentified Parameters

 6.8 Chib’s Method

 6.9 An Example of Bayes Factor Computation: Diagonal Multinomial Probit Models

 6.10 Marketing Decisions and Bayesian Decision Theory

 6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information

7 Simultaneity

 7.1 A Bayesian Approach to Instrumental Variables

 7.2 Structural Models and Endogeneity/Simultaneity

 7.3 Nonrandom Marketing Mix Variables

Case Study 1: A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts

 Background

 Model

 Data

 Results

 Discussion

 R Implementation

Case Study 2: Modeling Interdependent Consumer Preferences

 Background

 Model

 Data

 Results

 Discussion

 R Implementation

Case Study 3: Overcoming Scale Usage Heterogeneity

 Background

 Model

 Priors and MCMC Algorithm

 Data

 Discussion

 R Implementation

Case Study 4: A Choice Model with Conjunctive Screening Rules

 Background

 Model

 Data

 Results

 Discussion

 R Implementation

Case Study 5: Modeling Consumer Demand for Variety

 Background

 Model

 Data

 Results

 Discussion

 R Implementation

Appendix A: An Introduction to Hierarchical Bayes Modeling in R

 A.1 Setting Up the R Environment

 A.2 The R Language

 A.3 Hierarchical Bayes Modeling – An Example

Appendix B: A Guide to Installation and Use of bayesm

 B.1 Installing bayesm

 B.2 Using bayesm

 B.3 Obtaining Help on bayesm

 B.4 Tips on Using MCMC Methods

 B.5 Extending and Adapting Our Code

 B.6 Updating bayesm

References

Index


作者介绍:

暂无相关内容,正在全力查找中


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

暂无其它内容!


书籍真实打分

  • 故事情节:4分

  • 人物塑造:6分

  • 主题深度:8分

  • 文字风格:9分

  • 语言运用:5分

  • 文笔流畅:3分

  • 思想传递:5分

  • 知识深度:6分

  • 知识广度:7分

  • 实用性:5分

  • 章节划分:5分

  • 结构布局:5分

  • 新颖与独特:9分

  • 情感共鸣:6分

  • 引人入胜:3分

  • 现实相关:6分

  • 沉浸感:8分

  • 事实准确性:5分

  • 文化贡献:5分


网站评分

  • 书籍多样性:8分

  • 书籍信息完全性:3分

  • 网站更新速度:5分

  • 使用便利性:7分

  • 书籍清晰度:3分

  • 书籍格式兼容性:3分

  • 是否包含广告:6分

  • 加载速度:7分

  • 安全性:3分

  • 稳定性:9分

  • 搜索功能:8分

  • 下载便捷性:7分


下载点评

  • 好评多(178+)
  • 一星好评(429+)
  • 少量广告(339+)
  • 微信读书(669+)
  • 图文清晰(560+)
  • 傻瓜式服务(537+)
  • 推荐购买(504+)
  • 引人入胜(626+)
  • 无缺页(130+)
  • 在线转格式(313+)

下载评价

  • 网友 利***巧: ( 2024-12-26 21:06:30 )

    差评。这个是收费的

  • 网友 菱***兰: ( 2025-01-12 03:25:55 )

    特好。有好多书

  • 网友 冯***卉: ( 2024-12-27 20:51:37 )

    听说内置一千多万的书籍,不知道真假的

  • 网友 饶***丽: ( 2025-01-12 11:38:31 )

    下载方式特简单,一直点就好了。

  • 网友 陈***秋: ( 2025-01-02 20:13:09 )

    不错,图文清晰,无错版,可以入手。

  • 网友 丁***菱: ( 2025-01-15 23:58:56 )

    好好好好好好好好好好好好好好好好好好好好好好好好好

  • 网友 益***琴: ( 2024-12-31 02:01:21 )

    好书都要花钱,如果要学习,建议买实体书;如果只是娱乐,看看这个网站,对你来说,是很好的选择。

  • 网友 郗***兰: ( 2025-01-15 02:11:08 )

    网站体验不错

  • 网友 石***致: ( 2024-12-27 21:33:35 )

    挺实用的,给个赞!希望越来越好,一直支持。

  • 网友 宓***莉: ( 2024-12-22 14:48:32 )

    不仅速度快,而且内容无盗版痕迹。

  • 网友 芮***枫: ( 2024-12-21 21:59:05 )

    有点意思的网站,赞一个真心好好好 哈哈


随机推荐